FORUM TEKNIK ELEKTRO

Would you like to react to this message? Create an account in a few clicks or log in to continue.

Forum Diskusi, Sharing dan Informasi Seputar Teknik Elektro Se-indonesia


2 posters

    Solusi Aliran Daya dengan Newton Rapshon

    fauzan432176
    fauzan432176


    Jumlah posting : 39
    Join date : 06.05.10

    Solusi Aliran Daya dengan Newton Rapshon Empty Solusi Aliran Daya dengan Newton Rapshon

    Post  fauzan432176 Fri May 14, 2010 7:34 am

    Solusi Aliran Daya dengan Newton Rapshon Newton
    Solusi Aliran Daya dengan Newton Rapshon Newton2
    Solusi Aliran Daya dengan Newton Rapshon Newton3
    Solusi Aliran Daya dengan Newton Rapshon Newton4
    Solusi Aliran Daya dengan Newton Rapshon 12125559
    fauzan432176
    fauzan432176


    Jumlah posting : 39
    Join date : 06.05.10

    Solusi Aliran Daya dengan Newton Rapshon Empty Re: Solusi Aliran Daya dengan Newton Rapshon

    Post  fauzan432176 Tue May 25, 2010 9:50 pm

    untuk mempermudah analisa aliran daya dengan metode Newton-Raphson
    silahkan gunakan program matlab berikut
    lihat juga kategori forum rugi-rugi transmisi, untuk bus data, line data lfybus

    % Power flow solution by Newton-Raphson method
    % Copyright (c) 1998 by H. Saadat
    ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;
    nbus = length(busdata(:,1));
    for k=1:nbus
    n=busdata(k,1);
    kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
    Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,Cool;
    Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
    Qsh(n)=busdata(k, 11);
    if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
    else delta(n) = pi/180*delta(n);
    V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
    P(n)=(Pg(n)-Pd(n))/basemva;
    Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
    S(n) = P(n) + j*Q(n);
    end
    end
    for k=1:nbus
    if kb(k) == 1, ns = ns+1; else, end
    if kb(k) == 2 ng = ng+1; else, end
    ngs(k) = ng;
    nss(k) = ns;
    end
    Ym=abs(Ybus); t = angle(Ybus);
    m=2*nbus-ng-2*ns;
    maxerror = 1; converge=1;
    iter = 0;
    % Start of iterations
    clear A DC J DX
    while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch
    for i=1:m
    for k=1:m
    A(i,k)=0; %Initializing Jacobian matrix
    end, end
    iter = iter+1;
    for n=1:nbus
    nn=n-nss(n);
    lm=nbus+n-ngs(n)-nss(n)-ns;
    J11=0; J22=0; J33=0; J44=0;
    for i=1:nbr
    if nl(i) == n | nr(i) == n
    if nl(i) == n, l = nr(i); end
    if nr(i) == n, l = nl(i); end
    J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
    J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
    if kb(n)~=1
    J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
    J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
    else, end
    if kb(n) ~= 1 & kb(l) ~=1
    lk = nbus+l-ngs(l)-nss(l)-ns;
    ll = l -nss(l);
    % off diagonalelements of J1
    A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
    if kb(l) == 0 % off diagonal elements of J2
    A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end
    if kb(n) == 0 % off diagonal elements of J3
    A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end
    if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4
    A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end
    else end
    else , end
    end
    Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;
    Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;
    if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P
    if kb(n) == 2 Q(n)=Qk;
    if Qmax(n) ~= 0
    Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
    if iter <= 7 % Between the 2th & 6th iterations
    if iter > 2 % the Mvar of generator buses are
    if Qgc < Qmin(n), % tested. If not within limits Vm(n)
    Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to
    elseif Qgc > Qmax(n), % bring the generator Mvar within
    Vm(n) = Vm(n) - 0.01;end % the specified limits.
    else, end
    else,end
    else,end
    end
    if kb(n) ~= 1
    A(nn,nn) = J11; %diagonal elements of J1
    DC(nn) = P(n)-Pk;
    end
    if kb(n) == 0
    A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2
    A(lm,nn)= J33; %diagonal elements of J3
    A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4
    DC(lm) = Q(n)-Qk;
    end
    end
    DX=A\DC';
    for n=1:nbus
    nn=n-nss(n);
    lm=nbus+n-ngs(n)-nss(n)-ns;
    if kb(n) ~= 1
    delta(n) = delta(n)+DX(nn); end
    if kb(n) == 0
    Vm(n)=Vm(n)+DX(lm); end
    end
    maxerror=max(abs(DC));
    if iter == maxiter & maxerror > accuracy
    fprintf('\nWARNING: Iterative solution did not converged after ')
    fprintf('%g', iter), fprintf(' iterations.\n\n')
    fprintf('Press Enter to terminate the iterations and print the results \n')
    converge = 0; pause, else, end

    end

    if converge ~= 1
    tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,
    tech=(' Power Flow Solution by Newton-Raphson Method');
    end
    V = Vm.*cos(delta)+j*Vm.*sin(delta);
    deltad=180/pi*delta;
    i=sqrt(-1);
    k=0;
    for n = 1:nbus
    if kb(n) == 1
    k=k+1;
    S(n)= P(n)+j*Q(n);
    Pg(n) = P(n)*basemva + Pd(n);
    Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
    Pgg(k)=Pg(n);
    Qgg(k)=Qg(n); %june 97
    elseif kb(n) ==2
    k=k+1;
    S(n)=P(n)+j*Q(n);
    Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
    Pgg(k)=Pg(n);
    Qgg(k)=Qg(n); % June 1997
    end
    yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
    end
    busdata(:,3)=Vm'; busdata(:,4)=deltad';
    Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);

    %clear A DC DX J11 J22 J33 J44 Qk delta lk ll lm
    %clear A DC DX J11 J22 J33 Qk delta lk ll lm
    Runaldy sahputra
    Runaldy sahputra


    Jumlah posting : 1
    Join date : 03.01.12

    Solusi Aliran Daya dengan Newton Rapshon Empty Re: Solusi Aliran Daya dengan Newton Rapshon

    Post  Runaldy sahputra Tue Jan 03, 2012 12:03 pm

    salam gan Very Happy
    agan pernah coba analisa aliran daya topologi jaringan transmisi radial blm?

    Sponsored content


    Solusi Aliran Daya dengan Newton Rapshon Empty Re: Solusi Aliran Daya dengan Newton Rapshon

    Post  Sponsored content


      Waktu sekarang Sat Nov 23, 2024 12:12 am