2 posters
Solusi Aliran Daya dengan Newton Rapshon
fauzan432176- Jumlah posting : 39
Join date : 06.05.10
fauzan432176- Jumlah posting : 39
Join date : 06.05.10
untuk mempermudah analisa aliran daya dengan metode Newton-Raphson
silahkan gunakan program matlab berikut
lihat juga kategori forum rugi-rugi transmisi, untuk bus data, line data lfybus
% Power flow solution by Newton-Raphson method
% Copyright (c) 1998 by H. Saadat
ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;
nbus = length(busdata(:,1));
for k=1:nbus
n=busdata(k,1);
kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,;
Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
Qsh(n)=busdata(k, 11);
if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
else delta(n) = pi/180*delta(n);
V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
P(n)=(Pg(n)-Pd(n))/basemva;
Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
S(n) = P(n) + j*Q(n);
end
end
for k=1:nbus
if kb(k) == 1, ns = ns+1; else, end
if kb(k) == 2 ng = ng+1; else, end
ngs(k) = ng;
nss(k) = ns;
end
Ym=abs(Ybus); t = angle(Ybus);
m=2*nbus-ng-2*ns;
maxerror = 1; converge=1;
iter = 0;
% Start of iterations
clear A DC J DX
while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch
for i=1:m
for k=1:m
A(i,k)=0; %Initializing Jacobian matrix
end, end
iter = iter+1;
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
J11=0; J22=0; J33=0; J44=0;
for i=1:nbr
if nl(i) == n | nr(i) == n
if nl(i) == n, l = nr(i); end
if nr(i) == n, l = nl(i); end
J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
if kb(n)~=1
J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
else, end
if kb(n) ~= 1 & kb(l) ~=1
lk = nbus+l-ngs(l)-nss(l)-ns;
ll = l -nss(l);
% off diagonalelements of J1
A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
if kb(l) == 0 % off diagonal elements of J2
A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end
if kb(n) == 0 % off diagonal elements of J3
A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end
if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4
A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end
else end
else , end
end
Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;
Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;
if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P
if kb(n) == 2 Q(n)=Qk;
if Qmax(n) ~= 0
Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
if iter <= 7 % Between the 2th & 6th iterations
if iter > 2 % the Mvar of generator buses are
if Qgc < Qmin(n), % tested. If not within limits Vm(n)
Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to
elseif Qgc > Qmax(n), % bring the generator Mvar within
Vm(n) = Vm(n) - 0.01;end % the specified limits.
else, end
else,end
else,end
end
if kb(n) ~= 1
A(nn,nn) = J11; %diagonal elements of J1
DC(nn) = P(n)-Pk;
end
if kb(n) == 0
A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2
A(lm,nn)= J33; %diagonal elements of J3
A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4
DC(lm) = Q(n)-Qk;
end
end
DX=A\DC';
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
if kb(n) ~= 1
delta(n) = delta(n)+DX(nn); end
if kb(n) == 0
Vm(n)=Vm(n)+DX(lm); end
end
maxerror=max(abs(DC));
if iter == maxiter & maxerror > accuracy
fprintf('\nWARNING: Iterative solution did not converged after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')
fprintf('Press Enter to terminate the iterations and print the results \n')
converge = 0; pause, else, end
end
if converge ~= 1
tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,
tech=(' Power Flow Solution by Newton-Raphson Method');
end
V = Vm.*cos(delta)+j*Vm.*sin(delta);
deltad=180/pi*delta;
i=sqrt(-1);
k=0;
for n = 1:nbus
if kb(n) == 1
k=k+1;
S(n)= P(n)+j*Q(n);
Pg(n) = P(n)*basemva + Pd(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); %june 97
elseif kb(n) ==2
k=k+1;
S(n)=P(n)+j*Q(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); % June 1997
end
yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
end
busdata(:,3)=Vm'; busdata(:,4)=deltad';
Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);
%clear A DC DX J11 J22 J33 J44 Qk delta lk ll lm
%clear A DC DX J11 J22 J33 Qk delta lk ll lm
silahkan gunakan program matlab berikut
lihat juga kategori forum rugi-rugi transmisi, untuk bus data, line data lfybus
% Power flow solution by Newton-Raphson method
% Copyright (c) 1998 by H. Saadat
ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;
nbus = length(busdata(:,1));
for k=1:nbus
n=busdata(k,1);
kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,;
Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
Qsh(n)=busdata(k, 11);
if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
else delta(n) = pi/180*delta(n);
V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
P(n)=(Pg(n)-Pd(n))/basemva;
Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
S(n) = P(n) + j*Q(n);
end
end
for k=1:nbus
if kb(k) == 1, ns = ns+1; else, end
if kb(k) == 2 ng = ng+1; else, end
ngs(k) = ng;
nss(k) = ns;
end
Ym=abs(Ybus); t = angle(Ybus);
m=2*nbus-ng-2*ns;
maxerror = 1; converge=1;
iter = 0;
% Start of iterations
clear A DC J DX
while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch
for i=1:m
for k=1:m
A(i,k)=0; %Initializing Jacobian matrix
end, end
iter = iter+1;
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
J11=0; J22=0; J33=0; J44=0;
for i=1:nbr
if nl(i) == n | nr(i) == n
if nl(i) == n, l = nr(i); end
if nr(i) == n, l = nl(i); end
J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
if kb(n)~=1
J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));
J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
else, end
if kb(n) ~= 1 & kb(l) ~=1
lk = nbus+l-ngs(l)-nss(l)-ns;
ll = l -nss(l);
% off diagonalelements of J1
A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));
if kb(l) == 0 % off diagonal elements of J2
A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end
if kb(n) == 0 % off diagonal elements of J3
A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end
if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4
A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end
else end
else , end
end
Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;
Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;
if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P
if kb(n) == 2 Q(n)=Qk;
if Qmax(n) ~= 0
Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
if iter <= 7 % Between the 2th & 6th iterations
if iter > 2 % the Mvar of generator buses are
if Qgc < Qmin(n), % tested. If not within limits Vm(n)
Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to
elseif Qgc > Qmax(n), % bring the generator Mvar within
Vm(n) = Vm(n) - 0.01;end % the specified limits.
else, end
else,end
else,end
end
if kb(n) ~= 1
A(nn,nn) = J11; %diagonal elements of J1
DC(nn) = P(n)-Pk;
end
if kb(n) == 0
A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2
A(lm,nn)= J33; %diagonal elements of J3
A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4
DC(lm) = Q(n)-Qk;
end
end
DX=A\DC';
for n=1:nbus
nn=n-nss(n);
lm=nbus+n-ngs(n)-nss(n)-ns;
if kb(n) ~= 1
delta(n) = delta(n)+DX(nn); end
if kb(n) == 0
Vm(n)=Vm(n)+DX(lm); end
end
maxerror=max(abs(DC));
if iter == maxiter & maxerror > accuracy
fprintf('\nWARNING: Iterative solution did not converged after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')
fprintf('Press Enter to terminate the iterations and print the results \n')
converge = 0; pause, else, end
end
if converge ~= 1
tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,
tech=(' Power Flow Solution by Newton-Raphson Method');
end
V = Vm.*cos(delta)+j*Vm.*sin(delta);
deltad=180/pi*delta;
i=sqrt(-1);
k=0;
for n = 1:nbus
if kb(n) == 1
k=k+1;
S(n)= P(n)+j*Q(n);
Pg(n) = P(n)*basemva + Pd(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); %june 97
elseif kb(n) ==2
k=k+1;
S(n)=P(n)+j*Q(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
Pgg(k)=Pg(n);
Qgg(k)=Qg(n); % June 1997
end
yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
end
busdata(:,3)=Vm'; busdata(:,4)=deltad';
Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);
%clear A DC DX J11 J22 J33 J44 Qk delta lk ll lm
%clear A DC DX J11 J22 J33 Qk delta lk ll lm
Runaldy sahputra- Jumlah posting : 1
Join date : 03.01.12
salam gan
agan pernah coba analisa aliran daya topologi jaringan transmisi radial blm?
agan pernah coba analisa aliran daya topologi jaringan transmisi radial blm?